US 2005/0005261 Al

[0262] The meta-implementation layer defines one imple-
mentation interface for each descriptor interface. As long as
each implementation accesses the other implementations
through the meta-implementation layer, different implemen-
tations can be mixed together even if they are on different
platforms, written in different languages, and using different
implementation paradigms (like relational database struc-
tures versus object-oriented structures versus structured pro-
gramming).

[0263] An implementation actually performs functionality
and creates new structures for storing and retrieving data.
The implementations of the present invention are interfaces
that an implementation must implement to participate in the
meta-implementation layer. These interfaces are the same
interfaces an accessor must implement. A virtual implemen-
tation differs from an accessor by being the implementation
rather than delegating to an implementation. Different vir-
tual implementations may implement the same implemen-
tation interface differently.

[0264] An implementation has a one-to-one association
relationship with a descriptor that is the description for
which a given implementation is an implementation. An
implementation has a zero-to-one association relationship
with a description that is a description of the implementation
and use. An implementation may include the following
operation: newlnstance(ParameterList) that creates a new
instance of this implementation. An implementation change
event is fired when the implementation is changed in any
way.

[0265] Implementations define the rules something must
follow to be an instance of that implementation. An instance
holds a reference to the rules it follows. An instance cannot
change the implementation to which it points. The imple-
mentation is set at construction.

[0266] An instance has a one-to-one relationship with an
implementation that is the implementation defining the
instance.

[0267] A failure descriptor in the metamodel layer
describes the failures an operation throws, not the failure
itself. The failure itself is implemented using a model
implementation. To access a failure, use the model imple-
mentation for the failure.

[0268] A constraint implementation of the present inven-
tion is an implementation holding a model implementation
used to perform a specific restriction. The model must
implement the constraint interface to participate as a con-
straint.

[0269] A constraint implementation has a one-to-one asso-
ciation relationship with a model implementation that is the
identity of the model used to implement the particular
constraint associated with the constraint implementation.

[0270] The configuration in a constraint descriptor gives
the identity of the model implementation for a given con-
straint. That identity is used to retrieve the model imple-
menting the constraint from the metamodel repository. No
additional relationships are added by the constraint imple-
mentation.

[0271] A constraint implementation may include the fol-
lowing operations: getModelldentity() that gets the identity
of the model this constraint uses as a real implementation,

Jan. 6, 2005

and getModellmplementation() that gets the model that
implements the constraint. That model will be used for
constructing new instances of the constraint. The model
must implement I_ConstraintInstance.

[0272] A constraint implementation defines no additional
signals.

[0273] Composite constraints exist to provide AND/OR
operations to combine two or more simple constraints into a
more complex constraint. Since each constraint is evaluating
a Boolean expression, composite constraints simple use
logic to combine these expressions.

[0274] The AndConstraintlmplementation contains one
data implementation for the constraints which will be com-
bined together using the AND Boolean operation.

[0275] An access constraint implementation of the present
invention is a feature implementation and a constraint imple-
mentation. Access constraints check the current thread of
control to see if it contains an authorized user. If no user has
authorized, the constraint may perform a callback requesting
the user authenticate. Otherwise the constraint fails, the
operation stops, and a failure is thrown. If a user has been
authenticated, an access constraint looks to see if the user
has the appropriate credentials required to execute the
current operation. If the user does not hold these credentials,
the operation stops and throws a failure. An access constraint
defines a single data implementation holding credential
information that will be checked by the access constraint.
Some access constraints will create the credentials based on
the parent of which the access constraint a feature. Others
will have a static set of credentials.

[0276] An occurrence constraint implementation of the
present invention extends a feature implementation and
constraint implementation. Occurrence constraints examine
the number of items allowed in a specific location. A
MinimumOccurrenceConstraint would require that there
exist at least x instances, where x is a value set in the
constraint descriptor. A MaximumOccurrenceConstraint
would require that no more than X instances exist, where X
is a value set in the constraint descriptor. Many other
occurrence constraints are possible.

[0277] An occurrence constraint implementation is a
simple extension of constraint implementation and feature.
Below occurrence constraint is a sub-implementation of
occurrence constraint that restricts the number of occur-
rences to between a minimum value and a maximum value.
The range constraint defined two data implementations
maximum value and minimum value. The range constraint
expects two data instances to be set on the constraint
instance. The range constraint implementation may further
enforce the restriction that the maximum data instance is
always greater than or equal to minimum data instance by
creating a premutator operation on the minimum value and
maximum value data implementations.

[0278] A value constraint implementation of the present
invention extends feature implementation holding and con-
straint implementation. Value constraints inspect a data
object and compare a value to a set of requirements. Value
constraints can limit numbers to certain ranges. For
example, a RangeValueConstraint can ensure a percentage
parameter is always between 0 and 100. A PasswordCon-
straint could ensure a password have at least 8 characters

